Pedro is given that log50βˆ’βˆ’βˆš=0.8495. Without using a calculator, how can Pedro find log2√?



A log50βˆ’βˆ’βˆš=log25βˆ’βˆ’βˆšΓ—log2√=5Γ—log2√, so dividing 0.8495 by 5 will give the value of log2√.


B log50βˆ’βˆ’βˆš=log25βˆ’βˆ’βˆš+log2√=5+log2√, so subtracting 5 from 0.8495 will give the value of log2√.


C log100βˆ’βˆ’βˆ’βˆš=log50βˆ’βˆ’βˆš+log2√, and log100βˆ’βˆ’βˆ’βˆš=1, so subtracting 0.8495 from 1 will give the value of log2√.


D log100βˆ’βˆ’βˆ’βˆš=log50βˆ’βˆ’βˆšΓ—log2√, and log100βˆ’βˆ’βˆ’βˆš=1, so dividing 1 by 0.8495 will give the value of log2√.

Respuesta :

Answer:

log 2 = 0.301

Step-by-step explanation:

We have to find the value of log 2 while the value of log 5 is given to be 0.6989.

Now, starting with log 10, we get,

log 10 = log (5 Γ— 2) = log 5 + log 2

{Using the property of logarithm that, log AB = log A + log B}

β‡’ [tex]\log 10^{1} = \log 5 + \log 2[/tex]

β‡’ log 10 = 0.6989 + log 2

{Since [tex]\log x^{a} = a \log x[/tex]}

Again, we know that, log 10 = 1

β‡’ 1 = 0.6989 + log 2

β‡’ log 2 = 0.301 (Answer)