Respuesta :
Answer:
Maximize Z = 6x1 + 3x2
other answers are as follows in the explanation
Step-by-step explanation:
Employee Glass Needed per product(sq feet) Glass available per                                                  production
              Product   Â
Wood framed glass Aluminium framed glass  Â
doug 6 Â Â Â Â Â Â Â Â Â Â Â Â 0 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 36 Â
linda 0 Â Â Â Â Â Â Â Â Â Â Â Â 8 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 32 Â
Bob     6             8                       48 Â
profit  $300        $150 Â
per batch
Z = 6x1 + 3x2,
with the constraint
6x1 ≤ 36   8x2 ≤ 32    6x1 + 8x2 ≤ 48 Â
and x1 ≥ 0, x2 ≥ 0
Maximize Z = 6x1 + 3x2
to get the points of the boundary on the graph we say
when 6x1= 36
x1=6
when
8x2= 32
x2=4
to get the line of intersect , we go to Â
6x1 + 8x2 ≤ 48 Â
so, Â 6x1 + 8x2 = 48 Â
When X1=0
8x2=48
x2=6
when x2=0
x1=8
the optimal point can be seen on the graph as attached

In this exercise we have to write the maximum function of a company, in this way we find that:
A)[tex]M(Z) = 6x_1+ 3x_2[/tex]
B)[tex]X_1= 8 \ and \ x_2 = 6 \ or \ 0[/tex]
A)So to calculate the maximum equation we have:
[tex]Z = 6x_1 + 3x_2\\6x_1 \leq 36 \\ 8x_2 \leq 32 \\ 6x_1 + 8x_2 \leq 48[/tex]
B) To calculate the limits of the graph we have to do:
[tex]6x_1= 36\\x_1=6\\8x_2= 32\\x_2=4\\6x_1 + 8x_2 = 48\\X_1=0\\8x_2=48\\x_2=6\\x_2=0\\x_1=8[/tex]
See more about graphs at brainly.com/question/14375099