Answer:
a) v = +/- 0.323 m/s
b) x = -0.080134 m
c) v = +/- 1.004 m/s
Explanation:
Given:
               a = - (0.1 + sin(x/b))
b = 0.8
v = 1 m/s @ x = 0
Find:
(a) the velocity of the particle when x = -1 m
(b) the position where the velocity is maximum
(c) the maximum velocity.
Solution:
- We will compute the velocity by integrating a by dt.
              a = v*dv / dx =  - (0.1 + sin(x/0.8))
- Separate variables:
              v*dv = - (0.1 + sin(x/0.8)) . dx
-Integrate from v = 1 m/s @ x = 0:
             0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5
             0.5v^2 =  0.8cos(x/0.8) - 0.1x - 0.3
- Evaluate @ x = -1
             0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3
             v = sqrt (0.104516)
             v = +/- 0.323 m/s
- v = v_max when a = 0:
              -0.1 = sin(x/0.8)
               x = -0.8*0.1002
               x = -0.080134 m
- Hence,
              v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134
              v = sqrt (0.504)
              v = +/- 1.004 m/s